COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity.

CONTEXT: Medullary thyroid carcinoma (MTC) is a cancer of the parafollicular C cells commonly caused by an inherited or acquired RET proto-oncogene mutation. Therapeutic resistance and recurrence of the disease imply the presence of cancer stem cells in MTC.

OBJECTIVE: In this study, we sought to identify and characterize cancer stem cell-like cells in MTC.

MAIN OUTCOME MEASURES: The characterization of stem cell properties was performed using immunostaining, flow cytometry, sphere formation assay, rederivation assay, Western blotting, and quantitative RT-PCR of defined markers of neural stem and progenitor cells. The role of ret proto-oncogene activation was assessed through RNA interference knockdown.

RESULTS: CD133 positivity was identified by immunostaining patient MTC. Flow cytometry confirmed a subpopulation of CD133(+) cells in two MTC cell lines. The CD133(+) cells could be expanded by sphere formation assay, passaged multiple times, and expressed neural progenitor markers beta-tubulin 3 and glial fibrillary acidic protein. The MZ-CRC-1 cell line, which harbors a M918T RET mutation, had greater CD133(+) cell numbers and sphere-forming ability than the TT cell line, which harbors the less active C634W mutation. Sphere formation was more dependent on ret proto-oncogene activity than epidermal growth factor or fibroblast growth factor.

CONCLUSION: Our data support the existence of cancer stem-like cells in MTC, which exhibit the features of self-renewal and of multiple lineage differentiation that is dependent on ret proto-oncogene receptor activity. These findings may provide new insights to develop more promising therapy for MTC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app