Add like
Add dislike
Add to saved papers

Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.

In the present study, biosynthesis of silver nanoparticles and its activity on water borne bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using leaf extract of Acalypha indica and the formation of nanoparticles was observed within 30min. The results recorded from UV-vis spectrum, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) support the biosynthesis and characterization of silver nanoparticles. From high-resolution transmission electron microscopy (HRTEM) analysis, the size of the silver nanoparticles was measured 20-30nm. Further, the antibacterial activity of synthesized silver nanoparticles showed effective inhibitory activity against water borne pathogens Viz., Escherichia coli and Vibrio cholerae. Silver nanoparticles 10microg/ml were recorded as the minimal inhibitory concentration (MIC) against E. coli and V. cholerae. Alteration in membrane permeability and respiration of the silver nanoparticle treated bacterial cells were evident from the activity of silver nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app