COMPARATIVE STUDY
JOURNAL ARTICLE

Signaling pathways implicated in androgen regulation of endocortical bone

Kristine M Wiren, Anthony A Semirale, Joel G Hashimoto, Xiao-Wei Zhang
Bone 2010, 46 (3): 710-23
19895913
Periosteal expansion is a recognized response to androgen exposure during bone development and in profoundly hypogonadal adults. However, androgen also suppresses endocortical bone formation, indicating that its effects on bone are dichotomous and envelope-specific. In fact, enhanced androgen signaling has been shown to have dramatic detrimental effects on whole bone biomechanical properties in two different transgenic models with skeletally targeted androgen receptor (AR) overexpression. As the mechanisms underlying this response are uncharacterized, we compared patterns of gene expression in periosteum-free cortical bone samples derived from AR-overexpressing transgenic male mice and their wild-type counterparts. We then assessed direct androgen effects in both wild-type and AR-overexpressing osteoblasts in primary culture. Among major signaling pathways associated with bone formation, focused quantitative RT-PCR (qPCR) array-based analysis of endocortical bone gene expression from wild-type vs. transgenic males identified the transforming growth factor-beta (TGF-beta) superfamily and bone morphogenetic protein (BMP) signaling as significantly altered by androgen in vivo. Bioinformatic analyses indicated proliferation, osteoblast differentiation and mineralization as major biological processes affected. Consistent with the in vivo array data and bioinformatic analyses, inhibition of differentiation observed with androgen exposure was reduced by exogenous BMP2 treatment of AR-overexpressing cultures to stimulate BMP signaling, confirming array pathway analysis. In addition, nonaromatizable dihydrotestosterone (DHT) inhibited osteoblast proliferation, differentiation and several indices of mineralization, including mineral accumulation and mineralized nodule formation in primary cultures from both wild-type and AR-transgenic mice. These findings identify a molecular mechanism based on altered BMP signaling that contributes to androgen inhibition of osteoblast differentiation and mineralization. Such detrimental effects of androgen on osteoblast function may underlie the generally disappointing results of androgen therapy.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19895913
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"