JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner.

Stem Cells 2010 January
Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior-posterior and left-right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC-derived definitive endoderm (DE) into different foregut lineages in a dosage-dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation toward a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1(+) pancreatic progenitors. High FGF2 concentrations also promote differentiation toward an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to the best of our knowledge that induction of PDX1(+) pancreatic progenitors relies on FGF2-mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled-facts that will be of great value for future regenerative cell therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app