Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Central oxytocin is involved in restoring impaired gastric motility following chronic repeated stress in mice.

Accumulation of continuous life stress (chronic stress) often causes gastric symptoms. The development of gastric symptoms may depend on how humans adapt to the stressful events in their daily lives. Although acute stress delays gastric emptying and alters upper gastrointestinal motility in rodents, the effects of chronic stress on gastric motility and its adaptation mechanism remains unclear. Central oxytocin has been shown to have antistress effects. We studied whether central oxytocin is involved in mediating the adaptation mechanism following chronic repeated stress. Mice were loaded with acute and chronic stress (repeated stress for five consecutive days), and solid gastric emptying and postprandial gastric motility were compared between acute and chronic repeated stress. Expression of oxytocin and CRF mRNA in the hypothalamus was studied following acute and chronic repeated stress. Delayed gastric emptying during acute stress (43.1 +/- 7.8%; n = 6, P < 0.05) was completely restored to normal levels (72.1 +/- 2.4%; n = 6) following chronic repeated stress. Impaired gastric motility induced by acute stress was also restored following chronic repeated stress. Intracerebroventricular injection of oxytocin (0.1 and 0.5 microg) restored the impaired gastric emptying and motility induced by acute stress. The restored gastric emptying and motility following chronic repeated stress were antagonized by intracerebroventricular injection of oxytocin antagonists. Oxytocin mRNA expression in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus was significantly increased following chronic repeated stress. In contrast, increased CRF mRNA expression in the SON and PVN in response to acute stress was significantly reduced following chronic repeated stress. Our study suggests the novel finding that the upregulation of central oxytocin expression is involved in mediating the adaptation mechanism following chronic repeated stress in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app