Plasmin plays a key role in the regulation of profibrogenic molecules in hepatic stellate cells

Abril Martínez-Rizo, Miriam Bueno-Topete, Jaime González-Cuevas, Juan Armendáriz-Borunda
Liver International: Official Journal of the International Association for the Study of the Liver 2010, 30 (2): 298-310

BACKGROUND: Plasmin role in transforming growth factor-beta (TGF-beta)-responsive gene regulation remains to be elucidated. Also, plasmin action on co-repressor Ski-related novel protein N (SnoN) and differential activation of matrix metalloproteinases (MMPs) are unknown. Thus, the role of plasmin on profibrogenic molecule expression, SnoN transcriptional kinetics and gelatinase activation was investigated.

METHODS: Hepatic stellate cells (HSC) were transduced with adenovirus-mediated human urokinase plasminogen activator (Ad-huPA) (4 x 10(9) viral particles/ml). Overexpression of urokinase plasminogen activator and therefore of plasmin, was blocked by tranexamic acid (TA) in transduced HSC. Gene expression was monitored by reverse transcriptase polymerase chain reaction. HSC-free supernatants were used to evaluate MMP-2 and MMP-9 by zymography. SnoN, TGF-beta and tissue inhibitor of metalloproteinase (TIMP)-1 were analysed by Western blot. Plasmin and SnoN expression kinetics were evaluated in bile duct-ligated (BDL) rats.

RESULTS: Plasmin overexpression in Ad-huPA-transduced HSC significantly decreased gene expression of profibrogenic molecules [alpha1(I)collagen 66%, TIMP-1 59%, alpha-smooth muscle actin 90% and TGF-beta 55%]. Interestingly, both SnoN gene and protein expression increased prominently. Plasmin inhibition by TA upregulated the profibrogenic genes, which respond to TGF-beta-intracellular signalling. In contrast, SnoN mRNA and protein dropped importantly. Plasmin-activated MMP-9 and MMP-2 in HSC supernatants. Taken together, these findings indicate that MMP-9 activation is totally plasmin dependent. SnoN levels significantly decreased in cholestatic-BDL rats (82%) as compared with control animals. Interestingly, hepatic plasmin levels dropped 46% in BDL rats as compared with control.

CONCLUSION: Plasmin plays a key role in regulating TGF-beta-responding genes. In particular, regulation of TGF-beta-co-repressor (SnoN) is greatly affected, which suggests SnoN as a cardinal player in cholestasis-induced fibrogenesis.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"