JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models.

Although it is well established that males acquire more bone mass than females, the underlying mechanism and timing of this sex difference remain controversial. The aim of this study was to assess the relative contribution of sex steroid versus growth hormone-insulin-like growth factor 1 (GH-IGF-1) action to pubertal bone mass acquisition longitudinally in pubertal mice. Radial bone expansion peaked during early puberty (3 to 5 weeks of age) in male and female mice, with significantly more expansion in males than in females (+40%). Concomitantly, in 5 week old male versus female mice, periosteal and endocortical bone formation was higher (+70%) and lower (-47%), respectively, along with higher serum IGF-1 levels during early puberty in male mice. In female mice, ovariectomy increased radial bone expansion during early puberty as well as the endocortical perimeter. In male mice, orchidectomy reduced radial bone expansion only during late puberty (5 to 8 weeks of age), whereas combined androgen and estrogen deficiency modestly decreased radial bone expansion during early puberty, accompanied by lower IGF-1 levels. GHRKO mice with very low IGF-1 levels, on the other hand, showed limited radial bone expansion and no skeletal dimorphism. From these data we conclude that skeletal sexual dimorphism is established during early puberty and depends primarily on GH-IGF-1 action. In males, androgens and estrogens have stimulatory effects on bone size during late and early puberty, respectively. In females, estrogens limit bone size during early puberty. These longitudinal findings in mice provide strong evidence that skeletal dimorphism is determined by independent and time-specific effects of sex steroids and IGF-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app