Add like
Add dislike
Add to saved papers

The proliferation and migration effects of huangqi on RSC96 Schwann cells.

This study evaluated the proliferation effects of huangqi on neuron regeneration. We investigated the molecular mechanisms, which include: (1) cyclin D1, A, E-cell cycle factors and MAPK signaling proliferation (2) FGF-2-UPA-MMPs migration signaling. After treatment with various Huanqi concentrations (1.25, 12.5, 125, 250 and 500 microg/ml,), we observed that Huanqi can increase Rsc 96 cell proliferation at 12.5 microg/ml (p < 0.01) concentration determined by the MTT and wound healing tests. Examination by RT-PCR and Western blotting assay showed that Huangqi is able to stimulate the mRNA and protein expressions of cyclin D1, A, E, cell cycle controlling proteins and excite ERK and P38 MAPK signaling pathways to promote cell proliferation. Huangqi stimulates the FGF-2-UPA-MMP 9 migration pathway and enhances RSC 96 Schwann cells migration. Using MAPK chemical inhibitors, U0126, SB203580 and SP600125, the proliferative effects of Huangqi on RSC 96 cells were ERK and P38 signaling-dependent. Based on these results, applying an appropriate dose of Huangqi with biomedical materials would be a potential approach to enhancing neuron regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app