JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose.

Hyperglycemia-induced generation of reactive oxygen species contributes to the development of proatherogenic changes and vasculopathy in diabetes. NADPH oxidase has been recognized as a major source of reactive oxygen species in the vasculature and the lectin-like oxLDL receptor-1 (LOX-1) appears to play a crucial role in the pathogenesis of diabetic endothelial dysfunction. The present study aimed to examine the relationships between the hyperglycemia-mediated NADPH oxidase-LOX-1 pathway activation and nitric oxide-mediated endothelial function. In addition, we investigated effect of the NADPH oxidase inhibitor, apocynin on these consequences. In human umbilical artery endothelial cells (HUAECs), the effect of high glucose on expressional regulations and functional consequences of NADPH oxidase subunits, LOX-1 and endothelial nitric oxide synthase (eNOS), in the absence and presence of apocynin (10 micromol/l) were evaluated. HUAECs were cultured under normal (5.5 mmol/l) or high glucose (30mmol/l) concentrations for 48 h in the absence and presence of apocynin. Our results showed that high glucose significantly enhanced the activity and the protein expression of NADPH oxidase subunits, Nox2 and p47(phox). High glucose markedly increased LOX-1 mRNA level and this was functionally reflected on the augmented uptake of Dil-labelled LDL (5 micromol/l, 3h) by HUAECs. Furthermore, high glucose attenuated eNOS protein and total nitrite levels. However, apocynin inhibited all these changes. Collectively, our study demonstrates that high glucose-induced oxidative stress via NADPH oxidase activation and this contributed to LOX-1 upregulation and eNOS downregulation in human endothelial cells. Apocynin efficiently reversed these consequences, suggesting its potential role as a vasculoprotective agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app