Add like
Add dislike
Add to saved papers

Synthesis, structure, and photophysical characterization of blue-green luminescent zinc complexes containing 2-iminophenanthropyrrolyl ligands.

Inorganic Chemistry 2009 December 8
New 2-iminophenanthro[9,10-c]pyrrole ligand precursors containing phenyl or 2,6-diisopropylphenyl groups at the imine nitrogen substituent, 2-arylformiminophenanthro[9,10-c]pyrroles (aryl = phenyl IIa, 2,6-diisopropylphenyl IIb) were synthesized and deprotonated in situ with NaH, originating solutions of the corresponding sodium salts (IVa, IVb). The reaction of these salts with zinc chloride gave the homoleptic bis-ligand Zn(II) complexes [Zn(kappa(2)N,N'-2-arylformiminophenanthro[9,10-c]pyrrolyl)(2)] (aryl = phenyl 2a, 2,6-diisopropylphenyl 2b). The new ligand precursors and complexes were characterized by NMR, elemental analysis, UV/vis spectroscopy, and X-ray crystallography, when possible. The photophysical characterization was carried out using steady-state and picosecond time-resolved luminescence techniques in solution. The influence of the pi-extended conjugation of the condensed phenanthro group on the deprotonated iminopyrrolyl ligands coordinated to Zn(2+) greatly enhances fluorescence quantum yields of the complexes (2a, 2b) in relation to those of their ligand precursors (IIa, IIb). Complex 2a shows emission in the green spectral region (lambda(max) = 494 nm), presenting the highest fluorescence quantum yield (phi(f) = 8.8%). In the case of the complex 2b (phi(f) = 3.9%), the bulkiness of the 2,6-diisopropyl substituents of the arylimino group highly restricts the aryl ring rotation toward coplanarity with the ligand framework, inducing a shift in the emission to the blue region (lambda(max) = 459 nm). The values of the radiative (k(f)) and radiationless rate constants (k(nr)) show that the fluorescence quantum yield enhancement in the complexes results from a 50-fold increase in k(f) values, indicating much more allowed pi-pi* transitions in complexes 2a and 2b than those occurring in the ligand precursors IIa and IIb, with an essentially n-pi* character. These assignments were confirmed by density-functional theory (DFT) and time-dependent DFT (TD-DFT) molecular orbital calculations. Simple 2-aryliminopyrrole ligand precursors (Ia, Ib) and their Zn(II) complexes (1a, 1b) were also prepared to compare their photophysical properties with those of the corresponding 2-aryliminophenanthro[9,10-c]pyrrolyl compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app