Add like
Add dislike
Add to saved papers

Excited state properties, fluorescence energies, and lifetimes of a poly(fluorene-phenylene), based on TD-DFT investigation.

The structural and electronic properties of fluorene-phenylene copolymer (FP)(n), n = 1-4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD-DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)(n) is nonplanar in its ground state while the electronic excitations lead to planarity in its S(1) state. Absorption and fluorescence energies were calculated using TD-B3LYP/SVP and TD-B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S(1) <-- S(0) electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)(n) calculated from TD-B3LYP/SVP and TD-B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD-B3LYP/SVP and TD-B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app