JOURNAL ARTICLE

Knock down of the dual functional protein apurinic /apyrimidinic endonuclease 1 enhances the killing effect of hematoporphrphyrin derivative-mediated photodynamic therapy on non-small cell lung cancer cells in vitro and in a xenograft model

Zhen-Zhou Yang, Meng-Xia Li, Yun-Song Zhang, De-Bing Xiang, Nan Dai, Lin-Li Zeng, Zeng-Peng Li, Ge Wang, Dong Wang
Cancer Science 2010, 101 (1): 180-7
19860842
Photodynamic therapy (PDT) is considered to be effective treatment for many cancers including lung cancer, head and neck cancers, and prostate cancer. It uses the combination of nontoxic photosensitizers and harmless visible light to generate reactive oxygen species and kill cells. However, DNA repair and reactive oxygen species-induced signaling pathway activation play crucial roles in cellular response to PDT and may also result in therapeutic limitation of PDT. To improve the cancer therapeutic efficacy of PDT, we targeted apurinic/apyrimidinic endonuclease (APE1), which is essential for both DNA repair and redox regulation of gene transcription, as a potential candidate for PDT combined gene therapy. In our study, an adenovirus-mediated APE1 silencing strategy was introduced to test its therapeutic enhancement for the non-small cell lung cancer cell line A549 both in vitro and in vivo after hematoporphrphyrin derivative (HpD)-mediated PDT. The adenovirus vector Ad5/F35-shAPE1 was validated to significantly suppress the protein expression of APE1 in cultured A549 cell and in its xenograft of nude mice. Ad5/F35-shAPE1 effectively inhibited APE1 protein upregulation induced by PDT and resulted in an increase in A549 cell killing by photoirradiation compared with the hematoporphrphyrin derivative-PDT alone group. Ad5/F35-shAPE1 suppressed the DNA repair capacity for single-strand breaks and abolished the activation of some stress-related transcription factors such as hypoxia-induced factor (HIF)-1 that consequently lead to increased cell apoptosis after PDT. Additionally, knock down of APE1 enhanced the tumor suppression efficacy of PDT on the A549 xenograft. Our study indicated that APE1-targeted gene therapy combined with PDT is a promising strategy for enhancement of the efficacy of PDT in treatment of non-small cell lung cancer.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19860842
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"