Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors.

Clinical Cancer Research 2009 November 2
PURPOSE: Lung cancers with epidermal growth factor receptor (EGFR)-activating mutations show good clinical response to gefitinib and erlotinib, selective tyrosine kinase inhibitors (TKI) to EGFR, but these tumors invariably develop drug resistance. Host stromal cells have been found to have a considerable effect on the behavior of cancer cells. Little is known, however, about the role of host cells on the sensitivity of cancer cells to receptor TKIs. We have therefore assessed the effect of crosstalk between stromal cells and lung cancer cells harboring EGFR mutations on susceptibility to EGFR-TKIs.

EXPERIMENTAL DESIGN: We evaluated the gefitinib sensitivity of lung cancer cells with EGFR-activating mutations, PC-9 and HCC827, when cocultured with fibroblasts and coinjected into severe combined immunodeficient mice. We also examined the effect of lung cancer cells to fibroblast recruitment.

RESULTS: Both human fibroblast cell lines and primary cultured fibroblasts produced various levels of hepatocyte growth factor (HGF). Lung cancer cells markedly recruited fibroblasts. The lung cancer cells became resistant to EGFR-TKIs when cocultured in vitro with HGF-producing fibroblasts and coinjected into severe combined immunodeficient mice. Importantly, combined use of gefitinib plus anti-HGF antibody or the HGF antagonist, NK4, successfully overcame the fibroblast-induced EGFR-TKI resistance both in vitro and in vivo. Colocalization of fibroblasts and HGF was detected in both xenograft tumors in mouse model and lung cancer patient specimens.

CONCLUSIONS: These findings indicate that crosstalk to stromal fibroblasts plays a critical role in lung cancer resistance to EGFR-TKIs and may be an ideal therapeutic target in lung cancer with EGFR-activating mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app