Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Regulation of cardiac angiotensin-converting enzyme and angiotensin AT1 receptor gene expression in Npr1 gene-disrupted mice.

1. Understanding of the regulatory mechanisms of gene expression in the control of blood pressure and fluid volume is a key issue in cardiovascular medicine. Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) signalling antagonizes the physiological and pathophysiological effects mediated by the renin-angiotensin-aldosterone system (RAAS) in the regulation of cardiovascular homeostasis. 2. The targeted-disruption of the Npr1 gene (coding for GC-A/PRA) leads to activation of the cardiac RAAS involved in the hypertrophic remodelling process, which influences cardiac size, expression of pro-inflammatory cytokine genes and the behaviour of various hypertrophy marker genes. The Npr1 gene-knockout (Npr1(-/-)) mice exhibit 35-40 mmHg higher systolic blood pressure and a significantly greater heart weight to bodyweight ratio than wild-type (Npr1(+/+)) mice. 3. The expression of both angiotensin-converting enzyme (ACE) and angiotensin II AT(1a) receptors are significantly increased in hearts from Npr1(-/-) mice compared with hearts from Npr1(+/+) mice. In parallel, the expression of interleukin-6 and tumour necrosis factor-alpha is also markedly increased in hearts from Npr1(-/-) mice. 4. These findings indicate that disruption of NPRA/cGMP signalling leads to augmented expression of the cardiac RAAS in conjunction with pro-inflammatory cytokines in Npr1-null mutant mice, which promotes the development of cardiac hypertrophy and remodelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app