Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice.

PLoS Genetics 2009 October
CLAVATA signaling restricts stem cell identity in the shoot apical meristem (SAM) in Arabidopsis thaliana. In rice (Oryza sativa), FLORAL ORGAN NUMBER2 (FON2), closely related to CLV3, is involved as a signaling molecule in a similar pathway to negatively regulate stem cell proliferation in the floral meristem (FM). Here we show that the FON2 SPARE1 (FOS1) gene encoding a CLE protein functions along with FON2 in maintenance of the FM. In addition, FOS1 appears to be involved in maintenance of the SAM in the vegetative phase, because constitutive expression of FOS1 caused termination of the vegetative SAM. Genetic analysis revealed that FOS1 does not need FON1, the putative receptor of FON2, for its action, suggesting that FOS1 and FON2 may function in meristem maintenance as signaling molecules in independent pathways. Initially, we identified FOS1 as a suppressor that originates from O. sativa indica and suppresses the fon2 mutation in O. sativa japonica. FOS1 function in japonica appears to be compromised by a functional nucleotide polymorphism (FNP) at the putative processing site of the signal peptide. Sequence comparison of FOS1 in about 150 domesticated rice and wild rice species indicates that this FNP is present only in japonica, suggesting that redundant regulation by FOS1 and FON2 is commonplace in species in the Oryza genus. Distribution of the FNP also suggests that this mutation may have occurred during the divergence of japonica from its wild ancestor. Stem cell maintenance may be regulated by at least three negative pathways in rice, and each pathway may contribute differently to this regulation depending on the type of the meristem. This situation contrasts with that in Arabidopsis, where CLV signaling is the major single pathway in all meristems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app