Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC delta-independent pathway in human colon cancer HT29 cells.

Biochimie 2010 January
Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by its substrate heme and diverse stimuli. The induction of HO-1 gene expression is one of the important events in cellular response to pro-oxidative and pro-inflammatory insults. In this study, the effect of rottlerin, a putative PKC delta inhibitor, on HO-1 expression in HT29 human colon cancer cells was investigated. Rottlerin-induced HO-1 at both protein and mRNA levels in a dose- and time-dependent manner. Rottlerin-mediated HO-1 induction was abrogated in the presence of N-acetylcysteine (NAC) or glutathione (GSH). Rottlerin induced nuclear translocation of NF-E2-related factor 2 (Nrf2) and increased antioxidant response element (ARE)-driven transcriptional activity. Additionally, rottlerin activated p38 mitogen-activated protein kinase (MAPK) and ERK. The pharmacological inhibition of ERK and p38 MAPK inhibited rottlerin-induced HO-1 up-regulation. However, suppression of protein kinase C delta (PKC delta) expression by siRNA or overexpression of WT-PKC delta did not abrogate the rottlerin-mediated induction of HO-1. These results suggest that rottlerin induces up-regulation of HO-1 via PKC delta-independent pathway. Taken together, the present study identified rottlerin as a novel inducer of HO-1 expression and identified the mechanisms involved in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app