JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity.

Soluble HLA class I (sHLA-I) molecules can regulate survival of NK cells and their anti-tumor killing activity. Herein, we have analysed whether interaction of sHLA-I with CD8 and/or different isoforms of killer Ig-like receptors (KIR) induced secretion of transforming growth factor (TGF)-beta1. CD8+KIR- NK cell clones secreted TGF-beta1 upon the interaction of sHLA-I with CD8 molecule. sHLA-Cw4 or sHLA-Cw3 alleles engaging inhibitory isoforms of KIR, namely KIR2DL1 or KIR2DL2, strongly downregulated TGF-beta1 production elicited through CD8. On the other hand, sHLA-Cw4 or sHLA-Cw3 alleles induced secretion of TGF-beta1 by ligation of stimulatory KIR2DS1 or KIR2DS2 isoforms. TGF-beta1 strongly reduced NK cell-mediated tumor cell lysis and production of pro-inflammatory cytokines such as TNF-alpha and IFN-gamma. Also, TGF-beta1 inhibited NK cell cytolysis induced by the engagement of stimulatory receptors including NKG2D, DNAM1, 2B4, CD69, NKp30, NKp44 and NKp46. The IL-2-dependent surface upregulation of some of these receptors was prevented by TGF-beta1. Furthermore, TGF-beta1 hampered IL-2-induced NK cell proliferation but not IL-2-mediated rescue from apoptosis of NK cells. Depletion of TGF-beta1 restored all the NK cell-mediated functional activities analysed. Taken together these findings suggest that sHLA-I antigens may downregulate the NK cell-mediated innate response by inducing TGF-beta1 release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app