JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Vibrationally resolved absorption and emission spectra of rubrene multichromophores: temperature and aggregation effects.

We present a theoretical study on the temperature-dependent absorption and photoluminescence spectroscopy of rubrene multichromophores by combining the time-dependent long-range-corrected density functional theory with the exciton model. The spectra of rubrene multichromophores up to heptamers are calculated, and the effects of exciton-phonon coupling and temperature on the photophysical properties of both H- and J-aggregated oligomers are addressed. It is found that the spectral behavior of rubrene aggregates is very much dependent on aggregation details. As the temperature increases, higher excitonic states become populated, and low-energy dark states in H-aggregated oligomers become observable gradually while the peak intensities near the 0-0 transition decrease for J-aggregated oligomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app