JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthesis and biological evaluation of clicked curcumin and clicked KLVFFA conjugates as inhibitors of beta-amyloid fibril formation.

Abnormal aggregation of beta-amyloid (Abeta) peptides into toxic aggregates has been identified as a key event in Alzheimer's disease (AD). Inhibition of this process has thus emerged as a major therapeutic track against AD. The present work describes the synthesis and in vitro study of a novel class of inhibitors. Two copies of Abeta-binding motifs (either curcumin or the KLVFFA peptide) are clicked via copper(I)-mediated azide-alkyne cycloaddition on a constrained cyclopeptide scaffold designed to interfere with Abeta aggregation. Our conjugates strongly inhibit amyloid fibril formation from Abeta(40) at low inhibitor to Abeta molar ratios (e.g., 0.02:1 in the case of the KLVFFA conjugate) at which Abeta-binding motifs alone are fully inactive (thioflavin T assays and atomic force microscopy observation). This work highlights the value of combining Abeta-recognition domains with a steric hindrance-inducing scaffold for preventing amyloid fibril formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app