JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In utero exposure to di-(2-ethylhexyl) phthalate decreases mineralocorticoid receptor expression in the adult testis.

Endocrinology 2009 December
In utero exposure to di-(2-ethylhexyl) phthalate (DEHP) has been shown to result in decreased androgen formation by fetal and adult rat testes. In the fetus, decreased androgen is accompanied by the reduced expression of steroidogenic enzymes. The mechanism by which in utero exposure results in reduced androgen formation in the adult, however, is unknown. We hypothesized that deregulation of the nuclear steroid receptors might explain the effects of in utero DEHP exposure on adult testosterone production. To test this hypothesis, pregnant Sprague Dawley dams were gavaged with 100-950 mg DEHP per kilogram per day from gestational d 14-19, and testes were collected at gestational d 20 and postnatal days (PND) 3, 21, and 60. Among the nuclear receptors studied, the mineralocorticoid receptor (MR) mRNA and protein levels were reduced in PND60 interstitial Leydig cells, accompanied by reduced mRNA expression of MR-regulated genes. Methylation-sensitive PCR showed effects on the nuclear receptor subfamilies NR3A and -3C, but only MR was affected at PND60. Pyrosequencing of two CpG islands within the MR gene promoter revealed a loss of methylation in DEHP-treated animals that was correlated with reduced MR. Because MR activation is known to stimulate Leydig cell testosterone formation, and MR inhibition to be repressive, our results are consistent with the hypothesis that in utero exposure to DEHP leads to MR dysfunction and thus to depressed testosterone production in the adult. We suggest that decreased MR, possibly epigenetically mediated, is a novel mechanism by which phthalates may affect diverse functions later in life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app