JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin.

Biomaterials 2010 Februrary
The purpose of this study was to develop polymeric nano-carriers of doxorubicin (DOX) that can increase the therapeutic efficacy of DOX for sensitive and resistant cancers. Towards this goal, two polymeric DOX nano-conjugates were developed, for which the design was based on the use of multi-functionalized poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles decorated with alphavbeta3 integrin-targeting ligand (i.e. RGD4C) on the micellar surface. In the first formulation, DOX was conjugated to the degradable PEO-b-PCL core using the pH-sensitive hydrazone bonds, namely RGD4C-PEO-b-P(CL-Hyd-DOX). In the second formulation, DOX was conjugated to the core using the more stable amide bonds, namely RGD4C-PEO-b-P(CL-Ami-DOX). The pH-triggered drug release, cellular uptake, intracellular distribution, and cytotoxicity against MDA-435/LCC6(WT) (a DOX-sensitive cancer cell line) and MDA-435/LCC6(MDR) (a DOX-resistant clone expressing a high level of P-glycoprotein) were evaluated. Following earlier in vitro results, SCID mice bearing MDA-435/LCC6(WT) and MDA-435/LCC6(MDR) tumors were treated with RGD4C-PEO-b-P(CL-Hyd-DOX) and RGD4C-PEO-b-P(CL-Ami-DOX), respectively. In both formulations, surface decoration with RGD4C significantly increased the cellular uptake of DOX in MDA-435/LCC6(WT) and MDA-435/LCC6(MDR) cells. In MDA-435/LCC6(WT), the best cytotoxic response was achieved using RGD4C-PEO-b-P(CL-Hyd-DOX), that correlated with the highest cellular uptake and preferential nuclear accumulation of DOX. In MDA-435/LCC6(MDR), RGD4C-PEO-b-P(CL-Ami-DOX) was the most cytotoxic, and this effect correlated with the accumulation of DOX in the mitochondria. Studies using a xenograft mouse model yielded results parallel to those of the in vitro studies. Our study showed that RGD4C-decorated PEO-b-P(CL-Hyd-DOX) and PEO-b-P(CL-Ami-DOX) can effectively improve the therapeutic efficacy of DOX in human MDA-435/LCC6 sensitive and resistant cancer, respectively, pointing to the potential of these polymeric micelles as the custom-designed drug carriers for clinical cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app