JOURNAL ARTICLE

CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle

Marcia J Abbott, Arthur M Edelman, Lorraine P Turcotte
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2009, 297 (6): R1724-32
19812359
Multiple signals have been shown to be involved in regulation of fatty acid (FA) and glucose metabolism in contracting skeletal muscle. This study aimed to determine whether a Ca(2+)-stimulated kinase, CaMKK, is involved in regulation of contraction-induced substrate metabolism and whether it does so in an AMP-activated protein kinase (AMPK)-dependent manner. Rat hindlimbs were perfused at rest (n = 16), with 3 mM caffeine (n = 15), with 2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR; n = 16), or during moderate-intensity muscle contraction (MC; n = 14) and with or without 5 microM STO-609, a CaMKK inhibitor. FA uptake and oxidation increased (P < 0.05) 64% and 71% by caffeine, 42% and 93% by AICAR, and 65% and 143% by MC. STO-609 abolished (P < 0.05) caffeine- and MC-induced FA uptake and oxidation but had no effect with AICAR treatment. Glucose uptake increased (P < 0.05) 104% by caffeine, 85% by AICAR, and 130% by MC, and STO-609 prevented the increase in glucose uptake in caffeine and muscle contraction groups. CaMKKbeta activity increased (P < 0.05) 113% by caffeine treatment and 145% by MC but was not affected by AICAR treatment. STO-609 prevented the caffeine- and MC-induced increase in CaMKKbeta activity. Caffeine, AICAR, and MC increased (P < 0.05) AMPKalpha2 activity by 295%, 11-fold, and 7-fold but did not affect AMPKalpha1 activity. STO-609 decreased (P < 0.05) AMPKalpha2 activity induced by caffeine treatment and MC by 60% and 61% but did not affect AICAR-induced activity. Plasma membrane transport protein content of CD36 and glucose transporter 4 (GLUT4) increased (P < 0.05) with caffeine, AICAR, and MC, and STO-609 prevented caffeine- and MC-induced increases in protein content. These results show the importance of Ca(2+)-dependent signaling via CaMKK activation in the regulation of substrate uptake and FA oxidation in contracting rat skeletal muscle and agree with the notion that CaMKK is an upstream kinase of AMPK in the regulation of substrate metabolism in skeletal muscle.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19812359
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"