Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ginsenoside Rg1 protects against 6-OHDA-induced toxicity in MES23.5 cells via Akt and ERK signaling pathways.

AIM OF THE STUDY: The present study was designed to investigate the neuroprotective effects of ginsenoside Rg1 against 6-hydroxydopamine (6-OHDA)-induced toxicity in MES23.5 cells and their possible mechanisms.

MATERIALS AND METHODS: MES23.5 cells were treated with or without Rg1 for 24h before exposure to 6-OHDA. Cell viability was determined by MTS assay. The gene and protein expressions of Bcl-2 were detected by real time RT-PCR and western blotting. Phosphorylation of Akt and ERK1/2 were examined by western blotting.

RESULTS: Pretreatment with ginsenoside Rg1 had obvious neuroprotective effects on cell viability against 6-OHDA-induced toxicity. 6-OHDA decreased the gene and protein expressions of Bcl-2. These effects could be reversed by Rg1 pretreatment. Potential cell signaling candidates involved in this neuroprotective effect were examined. 6-OHDA significantly inhibited the phosphorylation of Akt and increased the phosphorylation of ERK1/2 in MES23.5 cells. Pretreatment with ginsenoside Rg1 could increase the Akt phosphorylation and inhibit the ERK1/2 phosphorylation induced by 6-OHDA. Further study revealed that LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), attenuated the neuroprotective effect of Rg1 on cell viability against 6-OHDA-induced toxicity.

CONCLUSIONS: Taken together, our results strongly suggest that ginsenoside Rg1 has neuroprotective effects against 6-OHDA-induced toxicity in MES23.5 cells. Its mechanism includes the up-regulation of Bcl-2 gene expression, the activation of Akt phoshphorylation as well as the inhibition of ERK1/2 phosphorylation induced by 6-OHDA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app