JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ultra-low dose naloxone upregulates interleukin-10 expression and suppresses neuroinflammation in morphine-tolerant rat spinal cords.

Behavioural Brain Research 2010 Februrary 12
Co-infusion of ultra-low dose naloxone and morphine attenuates morphine tolerance through the prevention of mu opioid receptor-Gs protein coupling. We previously demonstrated that chronic intrathecal infusion of morphine leads to tolerance and spinal neuroinflammation. The aim of present study was to examine the possible mechanisms by which ultra-low dose naloxone modulates spinal neuroinflammation, particularly the role of anti-inflammatory cytokine interleukin 10 (IL-10). Morphine tolerance was induced in male Wistar rats by intrathecal infusion of morphine (15 microg/h) for 5 days, and co-infusion of naloxone (15 pg/h) was used to evaluate the impact on spinal cytokine expression. Recombinant rat IL-10 (rrIL-10) or anti-rat IL-10 antibody was injected to elucidate the effect of IL-10 on morphine tolerance. Our results showed that co-infusion of naloxone (15 pg/h) with morphine not only attenuated tolerance, shifting the AD(50) from 89.2 to 11.7 microg but also inhibited the increased expression of pro-inflammatory cytokine (TNF-alpha, IL-1beta, and IL-6) caused by chronic intrathecal morphine infusion. The increase of IL-10 protein and mRNA were 1.5- and 3-fold, respectively, compared to that in morphine-infused rat spinal cords. A combination of daily rrIL-10 (1 microg) injection with morphine infusion produced, in a less potent, preservative antinociception and inhibited pro-inflammatory cytokine production compared to ultra-low dose naloxone co-infusion, and the effect of ultra-low dose naloxone co-infusion was inhibited by daily intrathecal anti-rat IL-10 antibody injection. These results demonstrate that IL-10 contributes to the attenuation of pro-inflammatory cytokine expression caused by ultra-low dose naloxone/morphine co-infusion and thus the attenuation of morphine tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app