Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells.

Biochemical Pharmacology 2010 Februrary 16
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. Emodin exhibits anticancer effects against a variety of cancer cells, including lung cancer cells. ERCC1 and Rad51 proteins are essential for nucleotide excision repair and homologous recombination, respectively. Furthermore, ERCC1 and Rad51 overexpression induces resistance to DNA-damaging agents that promote DNA double-strand breaks. Accordingly, the aim of this study was to determine the role of ERCC1 and Rad51 in emodin-mediated cytotoxicity in human non-small cell lung cancer (NSCLC) cells. Both ERCC1 and Rad51 protein levels as well as mRNA levels were decreased in four different NSCLC cell lines after exposure to emodin. These decreases correlated with the inactivation of the MKK1/2-ERK1/2 pathway. Moreover, cellular ERCC1 and Rad51 protein and mRNA levels were specifically inhibited by U0126, a MKK1/2 inhibitor. We found that transient transfection of human NSCLC cells with si-ERCC1 or si-Rad51 RNA and cotreatment with U0126 could enhance emodin-induced cytotoxicity. In contrast, overexpression of constitutively active MKK1/2 vectors (MKK1/2-CA) was shown to significantly recover reduced phospho-ERK1/2, ERCC1, and Rad51 protein levels and to rescue cell viability upon emodin treatment. These results demonstrate that activation of the MKK1/2-ERK1/2 pathway is the upstream signal regulating the expressions of ERCC1 and Rad51, which are suppressed by emodin to induce cytotoxicity in NSCLC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app