Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.

Lab on a Chip 2009 October 22
We describe the lateral displacement of a particle passing over a planar interdigitated electrode array at an angle as a function of the particle size. The lateral displacement was also measured as a function of the angle between the electrode and the direction of flow. A simplified line charge model was used for numerically estimating the lateral displacement of fluorescent polystyrene (PS) beads with three different diameters. Using the lateral displacement as a function of particle size, we developed a lateral dielectrophoretic (DEP) microseparator, which enables continuous discrimination of particles by size. The microchannel was divided into three regions, each with an electrode array placed at a different angle with respect to the direction of flow. The experiment using an admixture of 3-, 5-, and 10-microm PS beads showed that the lateral DEP microseparator could continuously separate out 99.86% of the 3-microm beads, 98.82% of the 5-microm beads, and 99.69% of the 10-microm beads, simply by using a 200-kHz 12-Vp-p AC voltage to create the lateral DEP force. The lateral DEP microseparator is thus a practical device for simultaneously separating particles according to size from a heterogeneous admixture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app