JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes.

Salt cress (Thellungiella halophila), a salt-tolerant relative of Arabidopsis, has turned to be an important model plant for studying abiotic stress tolerance. One binary bacterial artificial chromosome (BIBAC) library was constructed which represents the first plant-transformation-competent large-insert DNA library generated for Thellungiella halophila. The BIBAC library was constructed in BamHI site of binary vector pBIBAC2 by ligation of partial digested nuclear DNA of Thellungiella halophila. This library consists of 23,040 clones with an average insert size of 75 kb, and covers 4x Thellungiella halophila haploid genomes. BIBAC clones which contain inserts over 50 kb were selected and transformed into Arabidopsis for salt tolerant plant screening. One transgenic line was found to be more salt tolerant than wild type plants from the screen of 200 lines. It was demonstrated that the library contains candidates of stress tolerance genes and the approach is suitable for the transformation of stress susceptible plants for genetic improvement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app