JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of 5-azacytidine induction duration on differentiation of human first-trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells.

The aim of this study is to investigate effects of 5-azacytidine (5-aza) induction duration on differentiation of bone marrow mesenchymal stem cells (MSCs) from human first-trimester abortus (hfMSCs) towards cardiomyocyte-like cells. hfMSCs were stimulated with 10 micromol/l 5-aza for 24 h (group A), 48 h (group B) and 21 days (group C), respectively. During the induction, 30-40% of the cells gradually enlarged, elongated, connected with adjoining cells and formed myotube-like structures, branches and string-bead-like nuclei. Some of the cells congregated into cell clusters or strips. After the induction, numerous myofilaments in the cytoplasm and conjunction of intercalated disc-like structure between adjoining cells were observed. The induced cells expressed messenger ribonucleic acids (mRNAs) and proteins of myocardium-specific alpha-actin, sarcomeric beta-myocin heavy chain and troponin-T. The positive cell percentages for the three antigens in group C were each significantly higher than those antigens in group A and B (P<0.01) and the cell population doubling time (PDT) of group C was longer than those of group A and B (P<0.01). These indicate that 21-d induction with 10 micromol/l 5-aza slows down proliferation speed of hfMSCs but increases differentiation rate of hfMSCs into cardiomyocyte-like cells if compared with 24-48 h induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app