COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synergism of hydroxyapatite nanoparticles and recombinant mutant human tumour necrosis factor-alpha in chemotherapy of multidrug-resistant hepatocellular carcinoma.

BACKGROUND/AIMS: Locoregional chemotherapy continues to be the mainstay for the treatment of unresectable hepatocellular carcinoma (HCC). One of the principal obstacles implicated in its unsuccessful therapy is multidrug resistance (MDR). Former studies have identified the multidrug-resistant nature and possible mechanisms of hepatoma cells both in vitro and in vivo. This work aimed to develop an effective strategy for the treatment of HCC with MDR.

METHODS: The treatment was exploited to inhibit the MDR cells by co-administration of the recombinant mutant human tumour necrosis factor-alpha (rmhTNF-alpha), a sublethal dose of chemicals [adriamycin (ADM), mitomycin and 5-FU] and hydroxyapatite nanoparticles (nHAPs). Real-time quantitative reverse transcriptase-polymerase chain reaction and electrochemiluminescence Western blot were used to detect the expression of several related genes.

RESULTS: The chemicals acted synergistically with rmhTNF-alpha and nHAP in suppressing the growth of hepatoma cells and inducing apoptosis of the cells, with the MDR phenotype reversed, as measured by intracellular ADM retention. Analysis of mRNA and protein revealed that rmhTNF-alpha inhibited the gene expression of XIAP, survivin, Ki67, PCNA, MDR1 and BCRP to some extent. Moreover, the inhibitory effects mentioned above could be as good or better than when nHAP is incorporated into the regimens.

CONCLUSIONS: rmhTNF-alpha was not only able to restore the chemotherapeutic sensitivity to HepG2/ADM, its xenograft model and clinical samples but also further inhibited the growth of these tumours by a combination of nHAP. These results strongly suggested that chemicals in combination with rmhTNF-alpha and nHAP may be beneficial for the local treatment of advanced HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app