Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice.

Glia 2010 March
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Like MS, the animal model experimental autoimmune encephalomyelitis (EAE) is characterized by CNS inflammation and demyelination and can follow a relapsing-remitting (RR) or chronic (CH) disease course. The molecular and pathological differences that underlie these different forms of EAE are not fully understood. We have compared the differences in RR- and CH-EAE generated in the same mouse strain (C57BL/6) using the same antigen. At the peak of disease when mice in both groups have similar clinical scores, CH-EAE is associated with increased lesion burden, myelin loss, axonal damage, and chemokine/cytokine expression when compared with RR-EAE. We further showed that inflammation and myelin loss continue to worsen in later stages of CH-EAE, whereas these features are largely resolved at the equivalent stage in RR-EAE. Additionally, axonal loss at these later stages is more severe in CH-EAE than in RR-EAE. We also demonstrated that CH-EAE is associated with a greater predominance of CD8(+) T cells in the CNS that exhibit MOG(35-55) antigen specificity. These studies therefore showed that, as early as the peak stage of disease, RR- and CH-EAE differ remarkably in their immune cell profile, chemokine/cytokine responses, and histopathological features. These data also indicated that this model of CH-EAE exhibits pathological features of a chronic-progressive disease profile and suggested that the sustained chronic phenotype is due to a combination of axonal loss, myelin loss, and continuing inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app