JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a South American family.

Hypokalaemic periodic paralysis (HypoPP) is an autosomal dominant disorder, which is characterized by periodic attacks of muscle weakness associated with a decrease in the serum potassium level. A major disease-causing gene for HypoPP has been identified as CACNA1S, which encodes the skeletal muscle calcium channel alpha-subunit with four transmembrane domains (I-IV), each with six transmembrane segments (S1-S6). To date, all CACNA1S mutations identified in HypoPP patients are located within the voltage-sensor S4 segment. In this study we report a novel CACNA1S mutation in a new region of the protein, the S3 segment of domain III. We characterized a four-generation South American family with HypoPP. Genetic analysis identified a novel V876E mutation in all HypoPP patients in the family, but not in normal family members or 160 control people. Clinical analysis indicates that mutation V876E is associated with a severe outcome as characterized by a very early age of onset, complete penetrance and a severe prognosis including death. These results identify a new mutation in CACNA1S and expand the spectrum of CACNA1S mutations associated with HypoPP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app