Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biological evaluation of collagen-chitosan scaffolds for dermis tissue engineering.

Three-dimensional collagen-chitosan scaffolds were fabricated with type I collagen and chitosan through freeze drying and glutaraldehyde cross-linking. Dermal fibroblasts were isolated from neonatal Sprague-Dawley rat skin by dispase II/collagenase I digestion. The fibroblasts were then seeded into the scaffolds to construct tissue-engineered dermis. The microstructure of the scaffolds as well as the fibroblasts' proliferation, cytokine secretion and cell cycle were investigated. Flow cytometry analysis indicated that cells in the scaffolds proliferated steadily. IL-6 concentration measurement by the ELISA test suggested that the scaffolds could promote secretion of the fibroblasts' cytokine. These results show that the fibroblasts and the scaffolds interact well with each other, and the fibroblasts have better proliferation ability and biological activity in the scaffolds than in monolayer culture. The scaffolds are a promising candidate for tissue repair and regeneration with enhanced biostability and good cytocompatibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app