Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Poly (ADP-Ribose) polymerase inhibition attenuates atherosclerotic plaque development in ApoE-/- mice with hyperhomocysteinemia.

AIM: Hyperhomocysteinemia (Hhcy) is an important and independent risk factor for atherosclerosis. Recent studies have shown that Poly (ADP-ribose) polymerase (PARP) activation may be associated with Hhcy-induced endothelial dysfunction, which is an important mechanism for Hhcy to affect atherosclerotic progress. Thus, we investigated whether PARP inhibitors may attenuate atheroscle-rotic plaque development in an Hhcy-induced experimental animal model with atherosclerosis.

METHODS: Six-week-old homozygous apolipoprotein E-deficient (ApoE-/-) male mice fed a normal diet or high methionine diet randomly received intraperitoneal injections of 10 mg/kg 3-aminoben-zamide (3-AB, a PARP inhibitor) dissolved in phosphate-buffered saline (PBS), or physiological saline every other day for 12 weeks. Atherosclerotic lesion sizes and PARP activity were measured. Related inflammatory factors in atherogenesis were investigated by real-time quantitative PCR and Western blot analysis.

RESULTS: Our data demonstrated that ApoE-/- mice fed a high methionine diet generated Hhcy, which subsequently increased the atherosclerotic lesion size significantly, promoted oxidative stress-associated DNA damage and PARP activation, then increased the expression of proinflammatory fac-tors within atherosclerotic plaques. Although PARP inhibition by 3-AB did not markedly inhibit plaque development in ApoE-/- mice with spontaneous hyperlipidemia by feeding a normal diet, it significantly reduced the atherosclerotic lesion size by 40% in Hhcy-induced atherosclerosis without affecting plasma homocysteine levels and lipid contents, effectively suppressed PARP activation, and inhibited nuclear translocation of nuclear factor-(kappa)B (NF-(kappa)B) and subsequent production of inflam-matory factors, such as vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattactant protein-1 (MCP-1).

CONCLUSION: Our results suggest that PARP inhibition attenuates atherosclerotic plaque development under hyperhomocysteinemic conditions, through the inhibition of PARP activation, nuclear NF-kappaB translocation and subsequent expression of inflammatory factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app