JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Ca(v)3.1 and Ca(v)3.3) in reticular thalamic neurons of the cat.

Low-voltage-activated (LVA) Ca(2+) channels play a critical role in the generation of burst firing in the thalamus. Recently, three LVA Ca(2+) channel isoforms (Ca(v)3.1, Ca(v)3.2, Ca(v)3.3) have been identified in the reticular thalamic nucleus (RE). Previous electrophysiological and modelling studies have suggested that kinetically different T-type channels might be expressed in a compartmentalized manner in RE cells. However, their precise subcellular distribution has not been fully elucidated. Using light and electron microscopic (EM) immunocytochemistry, we investigated the subcellular expression pattern of Ca(v)3.1 and Ca(v)3.3 channel subunits in RE neurons of the cat. Fluorescent and peroxidase labelling demonstrated the presence of Ca(v)3.1 channel predominantly on the somata and proximal dendrites and Ca(v)3.3 channels on cell bodies. Quantitative immunogold localization disclosed that Ca(v)3.1 and Ca(v)3.3 isoforms showed 5.8- and 8.7-fold higher density, respectively, in the cytoplasm compared with somatic plasma membrane. Density of Ca(v)3.1 isoform in the somatic plasma membrane was 2.21-fold higher compared with Ca(v)3.3 subunit. In the dendritic plasma membrane, Ca(v)3.1 channel isoform was expressed throughout the entire dendritic tree. In contrast, Ca(v)3.3 isoform was absent from large-caliber, presumably proximal dendritic segments. Quantitative comparison showed that the relative density of immunogold particles compared with dendritic surface was 8.9- and 14.8-fold higher for Ca(v)3.1 and Ca(v)3.3, respectively, in small-diameter dendrites than in large proximal dendritic segments or somata. Our results demonstrate a higher density of low-threshold Ca(2+) channels in distal dendrites and provide further evidence of the role of RE neuron dendrites in the generation of prolonged, low-threshold spike bursts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app