JOURNAL ARTICLE

Dynamic nature of alterations in the endocrine system of fathead minnows exposed to the fungicide prochloraz

Gerald T Ankley, David C Bencic, Jenna E Cavallin, Kathleen M Jensen, Michael D Kahl, Elizabeth A Makynen, Dalma Martinovic, Nathaniel D Mueller, Leah C Wehmas, Daniel L Villeneuve
Toxicological Sciences: An Official Journal of the Society of Toxicology 2009, 112 (2): 344-53
19767443
The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms that maintain a dynamic homeostasis in the face of changing environmental conditions, including exposure to chemicals. We assessed the effects of prochloraz on HPG axis function in adult fathead minnows (Pimephales promelas) at multiple sampling times during 8-day exposure and 8-day depuration/recovery phases. Consistent with one mechanism of action of prochloraz, inhibition of cytochrome P450 (CYP) 19 aromatase activity, the fungicide depressed ex vivo ovarian production and plasma concentrations of 17beta-estradiol (E2) in female fish. At a prochloraz water concentration of 30 microg/l, inhibitory effects on E2 production were transitory and did not persist during the 8-day exposure phase. At 300 microg/l prochloraz, inhibition of E2 production was evident throughout the 8-day exposure but steroid titers recovered within 1 day of cessation of exposure. Compensation or recovery of steroid production in prochloraz-exposed females was accompanied by upregulation of several ovarian genes associated with steroidogenesis, including cyp19a1a, cyp17 (hydroxylase/lyase), cyp11a (cholesterol side-chain cleavage), and follicle-stimulating hormone receptor. In male fathead minnows, the 8-day prochloraz exposure decreased testosterone (T) production, possibly through inhibition of CYP17. However, as for E2 in females, ex vivo testicular production and plasma concentrations of T recovered within 1 day of stopping exposure. Steroidogenic genes upregulated in testis included cyp17 and cyp11a. These studies demonstrate the adaptability of the HPG axis to chemical stress and highlight the need to consider the dynamic nature of the system when developing approaches to assess potential risks of endocrine-active chemicals.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19767443
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"