We have located links that may give you full text access.
COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Diagnosing delayed cerebral ischemia with different CT modalities in patients with subarachnoid hemorrhage with clinical deterioration.
Stroke; a Journal of Cerebral Circulation 2009 November
BACKGROUND AND PURPOSE: Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage worsens the prognosis and is difficult to diagnose. We investigated the diagnostic value of noncontrast CT (NCT), CT perfusion (CTP), and CT angiography (CTA) for DCI after clinical deterioration in patients with subarachnoid hemorrhage.
METHODS: We prospectively enrolled 42 patients with subarachnoid hemorrhage with clinical deterioration suspect for DCI (new focal deficit or Glasgow Coma Scale decrease >or=2 points) within 21 days after hemorrhage. All patients underwent NCT, CTP, and CTA scans on admission and directly after clinical deterioration. The gold standard was the clinical diagnosis DCI made retrospectively by 2 neurologists who interpreted all clinical data, except CTP and CTA, to rule out other causes for the deterioration. Radiologists interpreted NCT and CTP images for signs of ischemia (NCT) or hypoperfusion (CTP) not localized in the neurosurgical trajectory or around intracerebral hematomas, and CTA images for presence of vasospasm. Diagnostic values for DCI of NCT, CTP, and CTA were assessed by calculating sensitivities, specificities, positive predictive values, and negative predictive values with 95% CIs.
RESULTS: In 3 patients with clinical deterioration, imaging failed due to motion artifacts. Of the remaining 39 patients, 25 had DCI and 14 did not. NCT had a sensitivity of 0.56 (95% CI, 0.37 to 0.73), specificity=0.71 (0.57 to 0.77), positive predictive value=0.78 (0.55 to 0.91), negative predictive value=0.48 (0.28 to 0.68); CTP: sensitivity=0.84 (0.65 to 0.94), specificity=0.79 (0.52 to 0.92), positive predictive value=0.88 (0.69 to 0.96), negative predictive value=0.73 (0.48 to 0.89); CTA: sensitivity=0.64 (0.45 to 0.80), specificity=0.50 (0.27 to 0.73), positive predictive value=0.70 (0.49 to 0.84), negative predictive value=0.44 (0.23 to 0.67).
CONCLUSIONS: As a diagnostic tool for DCI, qualitative assessment of CTP is overall superior to NCT and CTA and could be useful for fast decision-making and guiding treatment.
METHODS: We prospectively enrolled 42 patients with subarachnoid hemorrhage with clinical deterioration suspect for DCI (new focal deficit or Glasgow Coma Scale decrease >or=2 points) within 21 days after hemorrhage. All patients underwent NCT, CTP, and CTA scans on admission and directly after clinical deterioration. The gold standard was the clinical diagnosis DCI made retrospectively by 2 neurologists who interpreted all clinical data, except CTP and CTA, to rule out other causes for the deterioration. Radiologists interpreted NCT and CTP images for signs of ischemia (NCT) or hypoperfusion (CTP) not localized in the neurosurgical trajectory or around intracerebral hematomas, and CTA images for presence of vasospasm. Diagnostic values for DCI of NCT, CTP, and CTA were assessed by calculating sensitivities, specificities, positive predictive values, and negative predictive values with 95% CIs.
RESULTS: In 3 patients with clinical deterioration, imaging failed due to motion artifacts. Of the remaining 39 patients, 25 had DCI and 14 did not. NCT had a sensitivity of 0.56 (95% CI, 0.37 to 0.73), specificity=0.71 (0.57 to 0.77), positive predictive value=0.78 (0.55 to 0.91), negative predictive value=0.48 (0.28 to 0.68); CTP: sensitivity=0.84 (0.65 to 0.94), specificity=0.79 (0.52 to 0.92), positive predictive value=0.88 (0.69 to 0.96), negative predictive value=0.73 (0.48 to 0.89); CTA: sensitivity=0.64 (0.45 to 0.80), specificity=0.50 (0.27 to 0.73), positive predictive value=0.70 (0.49 to 0.84), negative predictive value=0.44 (0.23 to 0.67).
CONCLUSIONS: As a diagnostic tool for DCI, qualitative assessment of CTP is overall superior to NCT and CTA and could be useful for fast decision-making and guiding treatment.
Full text links
Trending Papers
2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2023 November 31
How we approach titrating PEEP in patients with acute hypoxemic failure.Critical Care : the Official Journal of the Critical Care Forum 2023 October 32
ANCA-associated vasculitis - Treatment Standard.Nephrology, Dialysis, Transplantation 2023 November 9
The alternative renin-angiotensin system in critically ill patients: pathophysiology and therapeutic implications.Critical Care : the Official Journal of the Critical Care Forum 2023 November 21
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app