JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mesalamine restores angiogenic balance in experimental ulcerative colitis by reducing expression of endostatin and angiostatin: novel molecular mechanism for therapeutic action of mesalamine.

Mesalamine (5-aminosalicylate acid, 5-ASA) is an effective treatment for ulcerative colitis (UC). The mechanisms of its actions are not fully understood. Because angiogenesis is critical for healing UC, we examined whether 5-ASA alters the angiogenic balance between angiogenic factors [e.g., vascular endothelial growth factor (VEGF)] and antiangiogenic factors (e.g., endostatin and angiostatin) in the colon in experimental UC. Rats were treated with saline or 5-ASA (100 mg/kg) twice daily and euthanized 3 or 7 days after iodoacetamide-induced UC. Clinical signs (e.g., lethargy, diarrhea) and UC lesions were measured. Expression of VEGF, endostatin, angiostatin, tissue necrosis factor alpha (TNF-alpha), and matrix metalloproteinases (MMPs) 2 and 9 was determined by Western blots, enzyme-linked immunosorbent assay, and zymography in the distal colon. 5-ASA treatment reduced lethargy and diarrhea and significantly decreased colonic lesions (by approximately 50%) compared with saline treatment in UC (both, P < 0.05). 5-ASA did not reverse the increased levels of VEGF, but it significantly reduced expression of endostatin and angiostatin in UC compared with vehicle treatment (both, P < 0.05). Furthermore, 5-ASA treatment significantly diminished increased activity of TNF-alpha and MMP9 in UC. This is the first demonstration that 5-ASA treatment reverses an imbalance between the angiogenic factor VEGF and antiangiogenic factors endostatin and angiostatin in experimental UC. The effect of 5-ASA in UC may be caused by the down-regulation of expression of endostatin and angiostatin by modulation of MMP2 and MMP9 via inhibition of TNFalpha. The inhibition of antiangiogenic factors may represent a novel molecular mechanism of the therapeutic action of 5-ASA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app