JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles.

Acute lymphoblastic leukemia (ALL) is an heterogeneous disease comprising several subentities that differ for both immunophenotypic and molecular characteristics. Over the years, the biological understanding of this neoplasm has largely increased. Gene expression profiling has allowed to identify specific signatures for the different ALL subsets and permitted the identification of pathways deregulated by a given lesion. MicroRNAs (miRNAs) are small noncoding RNAs, which play a pivotal role in several cellular functions. In this study, we investigated miRNAs expression profiles in a series of adult ALL cases by microarray analysis. Unsupervised hierarchical clustering largely recapitulated ALL subgroups. Furthermore, we identified miR-148, miR-151, and miR-424 as discriminative of T-lineage versus B-lineage ALL; ANOVA highlighted a set of six miRNAs-namely miR-425-5p, miR-191, miR-146b, miR-128, miR-629, and miR-126-that can discriminate B-lineage ALL subgroups harboring specific molecular lesions. These results were confirmed and extended by quantitative-PCR on a further cohort of cases. Finally, we used Pearson correlation analysis to combine miRNA and gene expression profiles. The distribution of correlation coefficients generated by comparing the expression of every miRNA/gene pair in our data set shows enrichment of both positively and negatively correlated pairs over background distributions obtained using randomized data. Moreover, a clear enrichment for predicted miRNA:target pairs is observed at negative correlation coefficient intervals. Signal-to-noise ratio highlighted several miRNA/gene pairs with a possible role in the disease. In fact, gene set enrichment analysis of genes composing the selected miRNA/gene pairs displays over-representation of functional categories related to cancer and cell-cycle regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app