Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress.

In our previous microarray analysis of NaCl-treated Arabidopsis roots, we identified a basic-helix-loop-helix (bHLH) transcription factor, bHLH92 (At5g43650), as one of the transcripts showing the greatest fold-increase in abundance upon NaCl exposure. Here, we characterize the role of bHLH92 in the context of abiotic stress physiology and hormone responses. We observed that bHLH92 transcript abundance increases in response to NaCl, dehydration, mannitol, and cold treatments, and compared these responses to those of two closely related genes: bHLH41 and bHLH42. The NaCl-inducibility of bHLH92 was only partially dependent on abscisic acid (ABA) biosynthesis and SALT OVERLY SENSITIVE2 (SOS2) pathways. As compared to WT, root elongation of bhlh92 mutants was more sensitive to mannitol, and these mutants also showed increased electrolyte leakage following NaCl treatments. Overexpression of bHLH92 moderately increased the tolerance to NaCl and osmotic stresses. Finally, we identified at least 19 putative downstream target genes of bHLH92 under NaCl treatment using an oligonucleotide microarray. Together these data show that bHLH92 functions in plant responses to osmotic stresses, although the net contribution of bHLH92-regulated genes to stress tolerance appears relatively limited in proportion to what might be expected from its transcript expression pattern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app