JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Studies on hypoglycaemic effects of polyherbal preparation in streptozotocin-induced diabetic male albino rats.

Many traditional treatments have been recommended in the alternative system of medicine for diabetes mellitus. However, the mode of action of most of the herbals used has not been defined. It has been reported that sex hormones are important regulators of insulin-mediated events in skeletal muscles. In view of this, a novel herbal preparation containing antidiabetic and aphrodisiac plants was used in the present study. Adult male albino rats were divided into following groups after induction of diabetes. Rats were given an intraperitoneal (i.p.) injection of streptozotocin (STZ), at a dose of 65 mg/kg body weight after overnight fasting, to induce diabetic state with blood glucose levels >250 mg/dL. Group 1-Control rats treated with single i.p. injection of vehicle, Group 2-Rats treated with polyherbal preparation (PHP; 500 mg/kg body weight by oral intubation, morning and evening for 30 days), Group 3-STZ-diabetic rats treated orally with equal volumes of vehicle (water) alone and Group 4-STZ-diabetic rats treated with PHP after 10 days of diabetic induction. STZ-diabetes decreased the body weight, serum insulin level and glucose oxidation in liver and skeletal muscles but increased the fasting blood glucose level. After polyherbal treatment, body weight and glucose oxidation were completely restored to control level while serum insulin level was restored partially and the glucose tolerance was significantly improved. There was a significant decrease in total haemoglobin (Hb) level of diabetic rats when compared to control but polyherbal treatment significantly improved the same. However, the other parameters studied (red blood cell [RBC], white blood corpuscle [WBC], packed cell volume [PCV], mean corpuscular volume [MCV] and mean corpuscular haemoglobin [MCH]) were unaltered. In conclusion, the anti-diabetic properties of PHP appear to be mediated through pancreatic beta-cell regeneration, resulting in maintenance of optimal blood glucose and its oxidation in liver and skeletal muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app