JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site.

Neuroscience 2009 December 16
The purpose of this study was to analyze the transcriptional regulation of the zebrafish solute carrier family 6 member 3 gene (slc6a3, dopamine transporter, dat), as a first step towards isolating regulatory sequences useful for driving transgene expression within dopaminergic neurons of the zebrafish CNS in vivo. We found that the 3.0 kb slc6a3 mRNA is expressed in each of the major groups of dopaminergic neurons previously identified in the zebrafish CNS. The slc6a3 gene spans >20 kb of genomic DNA and contains 15 exons. The genomic organization of slc6a3 is highly conserved with respect to its human orthologue, including the presence of an untranslated first exon. The promoter lacks a canonical TATA box and there are multiple transcriptional start sites. Functional analysis of cis-acting elements responsible for the expression pattern of slc6a3 was carried out by generating stable transgenic zebrafish lines expressing fluorescent reporters under transcriptional control of fragments of slc6a3 genomic sequence. The region between -2 kb and +5 kb with respect to the transcriptional start site contains the core slc6a3 promoter, in addition to neuronal enhancers and/or non-neuronal repressors that restrict expression to the CNS, but this region lacks cis-acting elements responsible for slc6a3 expression in dopaminergic neurons. The upstream sequence between -6 kb and -2 kb contains an enhancer element that drives slc6a3 expression in dopaminergic neurons of the pretectal region, and additional sequences that partially repress expression in non-dopaminergic neurons. However, expression of slc6a3 in dopaminergic neurons of the ventral diencephalon and telencephalon is dependent on elements that lie outside the region -6 kb to +5 kb. These data provide a detailed analysis of the slc6a3 gene and show that its expression in different populations of dopamine neurons is driven by discrete enhancers, rather than a single target sequence for a terminal factor involved in specifying neurochemical phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app