JOURNAL ARTICLE

Structure sensitivity of methanol electrooxidation on transition metals

Peter Ferrin, Manos Mavrikakis
Journal of the American Chemical Society 2009 October 14, 131 (40): 14381-9
19754206
We have investigated the structure sensitivity of methanol electrooxidation on eight transition metals (Au, Ag, Cu, Pt, Pd, Ir, Rh, and Ni) using periodic, self-consistent density functional theory (DFT-GGA). Using the adsorption energies of 16 intermediates on two different facets of these eight face-centered-cubic transition metals, combined with a simple electrochemical model, we address the differences in the reaction mechanism between the (111) and (100) facets of these metals. We investigate two separate mechanisms for methanol electrooxidation: one going through a CO* intermediate (the indirect pathway) and another that oxidizes methanol directly to CO(2) without CO* as an intermediate (the direct pathway). A comparison of our results for the (111) and (100) surfaces explains the origin of methanol electrooxidation's experimentally-established structure sensitivity on Pt surfaces. For most metals studied, on both the (111) and (100) facets, we predict that the indirect mechanism has a higher onset potential than the direct mechanism. Ni(111), Au(100), and Au(111) are the cases where the direct and indirect mechanisms have the same onset potential. For the direct mechanism, Rh, Ir, and Ni show a lower onset potential on the (111) facet, whereas Pt, Cu, Ag, and Au possess lower onset potential on the (100) facet. Pd(100) and Pd(111) have the same onset potential for the direct mechanism. These results can be rationalized by the stronger binding energy of adsorbates on the (100) facet versus the (111) facet. Using linear scaling relations, we establish reactivity descriptors for the (100) surface similar to those recently developed for the (111) surface; the free energies of adsorbed CO* and OH* can describe methanol electrooxidation trends on various metal surfaces reasonably well.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19754206
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"