JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Copper abolishes the beta-sheet secondary structure of preformed amyloid fibrils of amyloid-beta(42).

The observation of the co-deposition of metals and amyloid-beta(42) (Abeta(42)) in brain tissue in Alzheimer's disease prompted myriad investigations into the role played by metals in the precipitation of this peptide. Copper is bound by monomeric Abeta(12) and upon precipitation of the copper-peptide complex thereby prevents Abeta(42) from adopting a beta-sheet secondary structure. Copper is also bound by beta-sheet conformers of Abeta(42), and herein we have investigated how this interaction affects the conformation of the precipitated peptide. Copper significantly reduced the thioflavin T fluorescence of aged, fibrillar Abeta(42) with, for example, a 20-fold excess of the metal resulting in a ca 90% reduction in thioflavin T fluorescence. Transmission electron microscopy showed that copper significantly reduced the quantities of amyloid fibrils while Congo red staining and polarized light demonstrated a copper-induced abolition of apple-green birefringence. Microscopy under cross-polarized light also revealed the first observation of spherulites of Abeta(42). The size and appearance of these amyloid structures were found to be very similar to spherulites identified in Alzheimer's disease tissue. The combined results of these complementary methods strongly suggested that copper abolished the beta-sheet secondary structure of pre-formed, aged amyloid fibrils of Abeta(42). Copper may protect against the presence of beta-sheets of Abeta(42) in vivo, and its binding by fibrillar Abeta(42) could have implications for Alzheimer's disease therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app