JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Neutropenia in type Ib glycogen storage disease.

PURPOSE OF REVIEW: Glycogen storage disease type Ib, characterized by disturbed glucose homeostasis, neutropenia, and neutrophil dysfunction, is caused by a deficiency in a ubiquitously expressed glucose-6-phosphate transporter (G6PT). G6PT translocates glucose-6-phosphate (G6P) from the cytoplasm into the lumen of the endoplasmic reticulum, in which it is hydrolyzed to glucose either by a liver/kidney/intestine-restricted glucose-6-phosphatase-alpha (G6Pase-alpha) or by a ubiquitously expressed G6Pase-beta. The role of the G6PT/G6Pase-alpha complex is well established and readily explains why G6PT disruptions disturb interprandial blood glucose homeostasis. However, the basis for neutropenia and neutrophil dysfunction in glycogen storage disease type Ib is poorly understood. Recent studies that are now starting to unveil the mechanisms are presented in this review.

RECENT FINDINGS: Characterization of G6Pase-beta and generation of mice lacking either G6PT or G6Pase-beta have shown that neutrophils express the G6PT/G6Pase-beta complex capable of producing endogenous glucose. Loss of G6PT activity leads to enhanced endoplasmic reticulum stress, oxidative stress, and apoptosis that underlie neutropenia and neutrophil dysfunction in glycogen storage disease type Ib.

SUMMARY: Neutrophil function is intimately linked to the regulation of glucose and G6P metabolism by the G6PT/G6Pase-beta complex. Understanding the molecular mechanisms that govern energy homeostasis in neutrophils has revealed a previously unrecognized pathway of intracellular G6P metabolism in neutrophils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app