JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Beta(2) integrin deficiency yields unconventional double-negative T cells distinct from mature classical natural killer T cells in mice.

Immunology 2009 October
Expressed on leucocytes, beta(2) integrins (CD11/CD18) are specifically involved in leucocyte function. Using a CD18-deficient (CD18(-/-)) mouse model, we here report on their physiological role in lymphocyte differentiation and trafficking. CD18(-/-) mice present with a defect in the distribution of lymphocytes with highly reduced numbers of naïve B and T lymphocytes in inguinal and axillary lymph nodes. In contrast, cervical lymph nodes were fourfold enlarged harbouring unconventional T-cell receptor-alphabeta (TCR-alphabeta) and TCR-gammadelta CD3(+) CD4(-) CD8(-) (double-negative; DN) T cells that expanded in situ. Using adoptive transfer experiments, we found that these cells did not home to peripheral lymph nodes of CD18(wt) recipients but, like antigen-experienced T or natural killer (NK) T cells, recirculated through non-lymphoid organs. Lacking regulatory functions in vitro, CD18(-/-) TCR-alphabeta DN T cells did not suppress the proliferation of polyclonally activated CD4(+) or CD8(+) (single-positive; SP) T cells. Most interestingly, CD18(-/-) TCR-alphabeta DN T cells showed intermediate TCR expression levels, an absent activation through allogeneic major histocompatibility complex and a strong proliferative dependence on interleukin-2, hence, closely resembling NKT cells. However, our data oppose former reports, clearly showing that, because of an absent reactivity with CD1d-alphaGalCer dimers, these cells are not mature classical NKT cells. Our data indicate that CD18(-/-) TCR-alphabeta DN T cells, like NKT and TCR-gammadelta T cells, share characteristics of both adaptive and innate immune cells, and may accumulate as a compensatory mechanism to the functional defect of adaptive immunity in CD18(-/-) mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app