Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Directing human neural stem/precursor cells into oligodendrocytes by overexpression of Olig2 transcription factor.

Multipotential neural stem/precursor cells of the central nervous system were extensively studied for their properties of generating myelinating oligodendrocytes both in vitro and in vivo upon engraftment in animal models of myelin disorders, such as leucodystrophy and multiple sclerosis. These studies provided proof-of-principle that efficient myelination can be achieved by cell transplantation. However, one major drawback of cell-based therapy of myelin diseases is the difficulty in generating oligodendrocytes efficiently from human fetal neural stem/precursor cells (hNPC). Here we explored whether overexpression of the basic helix-loop-helix (bHLH) transcription factor Olig2 in fetal hNPC could enhance the generation of oligodendrocytes both in vitro and in vivo. We report that transduction of hNPC with Olig2-encoding lentiviral vectors enhances their commitment toward an oligodendroglial fate. Moreover, Olig2-transduced hNPC, grafted into the dysmyelinated shiverer mouse brain, survived up to 9 weeks, migrated extensively, and differentiated into MBP(+) myelinating oligodendrocytes. In contrast, control hNPC remained at a less mature stage and generated very few myelinating oligodendrocytes. Our study indicates that bHLH transcription factors, such as Olig2, are interesting targets for directing hNPC into myelinating oligodendrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app