Add like
Add dislike
Add to saved papers

A modified Activated Sludge Model to estimate solids production at low and high solids retention time.

Water Research 2009 October
In this paper, a modified version of the IWA-ASM1 model capable of correctly simulating the production of solids over a wide range of solids retention time (SRT) is presented. The parameters of the modified model have been estimated by integrating the results of respirometric and titrimetric tests with those of studies conducted on pilot scale plants that treat industrial wastewaters of differing characteristics. On the basis of the experimental results and their subsequent processing, it appears that the production of solids may be satisfactorily estimated using the modified model in which fractions X(P) and X(I) are supposed to be hydrolysable with a first-order kinetic. In the cases that were examined, the constant of the aforementioned kinetics was estimated to be k(i)=0.012 d(-1) and k(i)=0.014 d(-1), for tannery and textile wastewater respectively. A reliable calibration of the parameter k(i) was possible when data relative to the experiment conducted in the pilot plants for no less than 60 d and in conditions of complete solid retention was utilized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app