JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Histamine induces human beta-defensin-3 production in human keratinocytes.

BACKGROUND: The antimicrobial peptide human beta-defensin-3 (hBD-3) is produced by epidermal keratinocytes, and promotes cutaneous antimicrobial defense, inflammation, and wound repair. hBD-3 induces histamine release from mast cells. We previously showed that histamine enhanced transcriptional activity of activator protein-1 (AP-1) in human keratinocytes by inducing the expression of AP-1 component c-Fos via the activation of extracellular signal-regulated kinase (ERK) through H1 receptors.

OBJECTIVE: To examine in vitro effects of histamine on hBD-3 production in normal human keratinocytes.

METHODS: The hBD-3 production was examined by enzyme-linked immunosorbent assays and reverse transcription-polymerase chain reaction. The transcriptional activities were analyzed by dual luciferase assays. The phosphorylation of proteins was examined by Western blotting.

RESULTS: Histamine enhanced hBD-3 secretion and mRNA expression in keratinocytes. The histamine-induced hBD-3 production was suppressed by H1 antagonist pyrilamine and antisense oligonucleotides against signal transducer and activator of transcription 3 (STAT3) and AP-1 components c-Jun and c-Fos. Histamine enhanced STAT3 transcriptional activity and induced tyrosine and serine phosphorylation of STAT3. The former was suppressed by Janus kinase 2 (JAK2) inhibitor AG490, while the latter was suppressed by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059; both were suppressed by pyrilamine. AG490 and PD98059 suppressed histamine-induced hBD-3 production and STAT3 activity. Histamine induced tyrosine phosphorylation of JAK2, and pyrilamine suppressed the phosphorylation.

CONCLUSION: It is suggested that histamine induces hBD-3 production in human keratinocytes through H1 receptors by activating STAT3 and AP-1 via JAK2 and MEK/ERK. Histamine may promote cutaneous antimicrobial defense, inflammation, and wound repair through hBD-3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app