Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Clinical application of high-dose, image-guided intensity-modulated radiotherapy in high-risk prostate cancer.

PURPOSE: To report the feasibility and early toxicity of dose-escalated image-guided IMRT to the pelvic lymph nodes (LN), prostate (P), and seminal vesicles (SV).

METHODS AND MATERIALS: A total of 103 high-risk prostate cancer patients received two-phase, dose-escalated, image-guided IMRT with 3 years of androgen deprivation therapy. Clinical target volumes (CTVs) were delineated using computed tomography/magnetic resonance co-registration and included the prostate, portions of the SV, and the LN. Planning target volume margins (PTV) used were as follows: P (10 mm, 7 mm posteriorly), SV (10 mm), and LN (5 mm). Organs at risk (OaR) were the rectal and bladder walls, femoral heads, and large and small bowel. The IMRT was planned with an intended dose of 55.1 Gy in 29 fractions to all CTVs (Phase 1), with P+SV consecutive boost of 24.7 Gy in 13 fractions. Daily online image guidance was performed using bony landmarks and intraprostatic markers. Feasibility criteria included delivery of intended doses in 80% of patients, 95% of CTV displacements incorporated within PTV during Phase 1, and acute toxicity rate comparable to that of lower-dose pelvic techniques.

RESULTS: A total of 91 patients (88%) received the total prescription dose. All patients received at least 72 Gy. In Phase 1, 63 patients (61%) received the intended 55.1 Gy, whereas 87% of patients received at least 50 Gy. Dose reductions were caused by small bowel and rectal wall constraints. All CTVs received the planned dose in >95% of treatment fractions. There were no Radiation Therapy Oncology Group acute toxicities greater than Grade 3, although there were five incidences equivalent to Grade 3 within a median follow-up of 23 months.

CONCLUSION: These results suggest that dose escalation to the PLN+P+SV using IMRT is feasible, with acceptable rates of acute toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app