OPEN IN READ APP
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome

Fabiano Di Marco, Jérôme Devaquet, Aissam Lyazidi, Fabrice Galia, Nathalia Pinto da Costa, Roberto Fumagalli, Laurent Brochard
Critical Care Medicine 2010, 38 (1): 127-32
19730254

OBJECTIVE: In acute respiratory distress syndrome, alveolar recruitment improves gas exchange only if perfusion of the recruited alveolar units is adequate. To evaluate functional recruitment induced by positive end-expiratory pressure, we assessed pulmonary conductance for gas exchange based on lung diffusion for carbon monoxide and its components, including pulmonary capillary blood volume.

DESIGN: Prospective, randomized, crossover study.

SETTING: Medical intensive care unit of a university hospital.

PATIENTS: Sixteen patients with lung injury/acute respiratory distress syndrome as well as eight control patients under invasive ventilation and eight healthy volunteers.

INTERVENTIONS: Mechanical ventilation with two levels of positive end-expiratory pressure (5 and 15 cm H2O).

MEASUREMENTS AND MAIN RESULTS: Lung diffusion for carbon monoxide and lung volumes, arterial blood gas analysis, and pressure-volume curves. In patients with acute respiratory distress syndrome, high positive end-expiratory pressure induced a 23% mean lung diffusion for carbon monoxide increase (4.4 +/- 1.7 mm Hg . min vs. 3.6 +/- 1.4 mL . mm Hg . min). In control patients and in healthy volunteers, lung diffusion for carbon monoxide values were (median [interquartile range]) 5.5 [3.8-8.0] mm Hg . min and 19.6 [15.1-20.6] mL . mm Hg . min, respectively. Among patients with acute respiratory distress syndrome, eight showed a >20% lung diffusion for carbon monoxide increase (responders) when increasing positive end-expiratory pressure. In the other eight, lung diffusion for carbon monoxide decreased or showed a <5% increase (nonresponders) with high positive end-expiratory pressure. Compared with nonresponders, responders at low positive end-expiratory pressure had smaller lungs with higher capillary blood volume-to-lung-volume ratio, higher values of the lower inflection point, and significantly greater increases in pulmonary capillary blood volume with high positive end-expiratory pressure. High positive end-expiratory pressure increased PaO2/Fio2 only in the responders.

CONCLUSIONS: The functional response to positive end-expiratory pressure in patients with acute lung injury/acute respiratory distress syndrome seems better when the lungs are smaller and with a higher capillary blood-volume-to-lung-volume ratio. Lung diffusion for carbon monoxide measurement supplies additional information about functional lung recruitment, which is not synonymous with mechanical recruitment.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
19730254
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"